An - Вымирающие народы России: русские

Какое на фиг воспитание Студия 3 млн в Питере по делите да же 50тр это 5 лет не жрать и % не платить, а теперь объясните сколько детей вы сделаете на 24 кв м? И на что их будете клрмить? Теперь суда + рост ВИЧ Африку обогнали + норкаманов + низку зарплату + отсутствие нормально оплачиваемой работы + увеличение пенсионного возраста + гасторбайтеры. Вот и результат. А какая проблема у нас наверху? Украина, которую просрали, а обсуждать больше не чего. Словоблуды пишут всякую фигню видимо по заказу!!

Вит - Что стало с Иисусом после воскрешения?

))) Воскресить можно только материальное тело. Душа человека бессмертна. Потому и тело невозможно вознести куда либо. Это прах земной. На земле и остается.

Döwlet - Какой народ — истинный наследник Волжской Булгарии

Давайте придерживатсья фактов! ТУРКМЕНЫ И БОЛГАРЫ: ИСТОРИЧЕСКИЕ ПАРАЛЛЕЛИ И ПЕРЕСЕЧЕНИЯ На берегах Волги и Камы в эпоху средневековья существовало независимое царство - Волжская Болгария (VII-XII вв.), которое существовало одновременно с государством дунайских болгар. «Какое имеют отношение болгары к туркменам?!», - зададитесь вы вопросом. Дело в том, что в те далекие времена судьбы предков туркмен и болгар не раз пересекались. Первые сведения о болгарах появляются в IV в. н.э. в эпоху хуннов (предков туркмен-огузов), когда они, находясь в их составе, выдвигаются из Центральной Азии в Восточную Европу. Известны названия их племен - оногур и кутригур. Известный российский тюрколог Н.А.Баскаков считает, что слово "огур" - это болгарская диалектная форма слова "огуз", и выделяет специально "огузо-болгарскую" подгруппу тюркских языков (современные гагаузы, балканские тюрки), для которых характерно замещение согласного "з" на "р" (сравн. туркменские этнонимы "огры", "огурджали"). После распада центральноазиатской империи хуннов, болгары вошли в состав государства Гек-туркменов (Древнетюркской империи), а вскоре, после распада этой империи на два государства (Западное и Восточное ханства), болгары влились в состав Западного ханства, в котором главенствующую роль играли огузы. Когда это ханство в VII в. утратило свое могущество и через некоторое время распалось, на его месте возникли два новых объединения - Хазарское (в Прикаспии) и Болгарское (в Приазовье). В "Хронике" Иоана Никиусского (VII в.) указывается, что во главе болгар стал хан Кубрат из племени оногуров – племянник туркмено-огузского князя Орхана. Кубрат-хан в 632 г. объединил под своей властью многочисленные болгарские роды и создал государство под названием Великая Болгария. Но после смерти Кубрата (в 20-х гг. VIII в.) это государство распалось. По сообщениям Никифора, пять сыновей Кубрата, "...мало заботясь об отеческом завещании, по прошествии недолгого времени отделились друг от друга, и каждый из них отделил себе свою часть народа". Этим не замедлили воспользоваться хазары, которые обрушились на ближайшую орду старшего сына Кубрата Батбая. Решив спасти свои семьи, один из братьев уходит к тюркским аварам, другой – под покровительство византийцев. Болгарские племена были рассеяны. Третий сын Кубрата хан Аспарух откочевал на Балканы и, подчинив славян, создал государство Дунайских болгар. Еще одна часть болгарских племен отошла к Волге и образовала государство Волжских Болгар. Среди болгарских племен в Поволжье упоминаются племена: савир, авар, абдал. Если сравнить эти болгарские этнонимы с современными туркменскими, то выясняется следующее. Имеющие древнее эфталитское происхождение абдалы и ныне существуют в составе туркмен - туркменские абдалы проживают в Астрахани и Ставрополье (Российская Федерация), а род абдал в составе туркмен-човдуров расселен в Дашогузском велаяте (Туркменистан). Савиры, входившие когда-то в хуннский союз, находились позднее в составе болгар, хазар и туркмен-огузов. Оно сохранилось в качестве этнонима у гекленов (род сувар) и ставропольских човдуров (род саварджалы). В VIII в. источники фиксируют следующие племена волжских болгар: чакар, кувайар, йупан, охсун, куригир, эскиль, сиван. Примечательно, что названия болгарских племен куригир может быть отождествлено с названием огузо-туркменского средневекового племени каркыр; сиван - с гек-туркменским суван и современным туркменским родом суван (эрсары); чакар - с чекир (роды у эрсары, геклен, салыр, сакар). Как считает языковед С.Атаниязов, племя эскиль находилось в составе еще белых хуннов (эфталитов). Название данного племени может быть отождествлено с названием туркменского этнонима эски. Кувайар же может быть сопоставлено с каварами. Археолог С.П.Толстов возводит их к хорезмийцам (через хвар, ховар). Кавары мужественно сражались с византийцами и в составе мадьяр (венгров). Примечательны и данные языка. Несмотря на то, что современные балканские болгары, сохраняя тюркский этноним, слились со славянами и приняли еще в средневековье их язык, в болгарском языке обнаруживается множество тюркских слов, имеющих общие корни со словами современного туркменского языка. Приведем некоторые из них. БОЛГАРСКИЙ - ТУРКМЕНСКИЙ ама - но, однако эмма - но, однако аслан - лев арслан - лев артык - с излишком артык - с излишком ачик - очевидный, явный ачык - открытый, очевидный, явный баджана - свояк баджа - свояк байрак - знамя байдак – знамя баш - первый, главный баш - главный бюрек - пирог бёрек - пельмени кавърма - мясное кушанье ковурма - жареное мясо кьосе - безбородый косе - безбородый кюкюрт - сера кукурт - сера макам - мелодия мукам - народная мелодия сап - ручка сап - ручка эски - старый эски - старый. Это всего лишь поверхностное сравнение двух языков. Нет никаких сомнений, что чисто языковедческое исследование даст превосходный материал для сопоставления исторических путей двух народов. Необычайно интересными являются выводы российских филологов. Например, А.П.Ковалевский отождествляет сам этноним "болгар", "булгар" со средневековым огузским племенем бурказ, по аналогии "болгар" - "боргар" - "борказ". В.В.Полосин, специально исследовавший этноним "болгар", определил, что арабская графика дает четыре схожих написания - булгар, булкар, бургаз, буруджан. Он считает, что все эти слова являются одним и тем же названием народа не только по написанию, но и по указанию географического расположения племен и полагает, что правильно прочтенная форма - "бургаз", а также часто встречающаяся в исторических источниках форма "булгар" являются диалектными формами общего древнего этнонима "бургар", упомянутого у византийского автора Закария Ритора (VI в.). Диалектные изменения "бургар" - "булгар" и "бургар" - "бургаз" может быть объяснено исторической фонетикой тюркских языков. Итак, сам этноним "болгар" встречается у туркменского народа, у которого до сих пор существует род бурказ (в составе текинцев). не случайно арабский путешественник Ибн Фадлан (X в.) отмечал, что туркмено-огузский военачальник Этрек Катаган называл царя волжских болгар Алмуша своим зятем. В начале XIII в., когда монголы разрушили Волжскую Болгарию, большое количество болгар, а также огузов и кыпчаков, не желая подчиняться захватчикам, нашло убежище в Дунайской Болгарии, Венгрии и Литовском княжестве. Конечно, в Болгарию еще до нашествия монголов проникали огузо-кыпчакские роды. Заняв большие пастбища на нижнем Дунае, Добрудже и на северо-востоке Болгарии, они активно поддерживали болгар в борьбе против их врагов. Когда в 70-х гг. XII в. болгарский народ поднялся на борьбу с Византийской империей, то движение возглавили два брата - огузо-кыпчакские ханы Асен и Петр. После победы Асен I стал царем Болгарии (1187 г.). Так появилась династия болгарских царей Осеней, имя родоначальника которой этимологически связывается с создателем империи Гек-туркменов Ашиной (Асень-шад). Болгары беспрепятственно впускали на свою территорию ушедших от монголов огузов, кыпчаков, своих мусульманских сородичей - волжских болгар. Общее происхождение и сострадание к попавшим в беду братьям с Востока оказались сильнее различия в вере. Часть волжских болгар оставалась на своих прежних местах, приняв подданство монголов. Исследователи болгарских погребений на Волге В.Ф.Генинг и А.Х. Халиков отмечают, что в составе государства Волжских Болгар находились башкиры, печенеги, огузы. Таким образом, шел процесс этнического взаимопроникновения огузов и болгар. Интересно, что на бывшем болгарском кладбище в Поволжье обнаружен надгробный камень (XIV в.) с надписью: "Торкман Мухаммед, сын Якуба". Тюркский народ болгары играл большую роль в истории Поволжья, Приднепровья, Северного Кавказа, Балкан. Как утверждают исследователи, именно болгары, совместно с огузами, явились родоначальниками северокавказских тюрков-болгар. Болгары вошли в состав казанских татар, чувашей, мишарей, башкир. Теперь можно добавить: и туркмен! В 1886 г. группа офицеров эмигрировала в Российскую империю. Один из них - Георгий Вазов, имевший военно-инженерное образование, был направлен в Туркменистан, где в это время прокладывались железнодорожные линии. Десять лет Г.Вазов проработал в солнечной стране, а в 1897 г. вернулся в Болгарию. В 1912 г. именем Г.Вазова названа одна из улиц в городе Серхетабат (бывш. г.Кушка). В Туркменистане у Г.Вазова, который пребывал тогда в чине капитана, было много друзей. Одним из них был поручик - туркмен Николай Йомудский (будущий герой первой мировой войны). Перед отъездом Г.Вазова в Болгарию Н.Йомудский подарил ему османскую саблю и пистолет. В 1913 г. генерал Г.Вазов был назначен военным министром Болгарии. Подарки туркменского друга хранились в семье болгарского генерала как бесценные реликвии. В ноябре 2000 г. экспертная комиссия Военно-исторического музея в Софии идентифицировала их и приняла решение: "Оружие имеет коллекционную стоимость". Вот и вновь протянулась связующая нить между Туркменистаном и Болгарией Овез ГУНДОГДЫЕВ (Туркменистан), Богдан ОГАРЧИНСКИЙ (Болгария)

"Нет стремления более естественного, чем стремление к знанию." - М.Монтень

МАКСВЕЛЛ, Джеймс Клерк (1831 - 1879) - выдающийся английский физик. Его наиболее замечательные исследования относятся к кинетической теории газов и электричеству; является создателем теории электромагнитного поля и электромагнитной теории света.


Согласно опросу, проведенному среди ученых журналом "Физик уолд", физик Джеймс Клерк Максвелл вошел в первую тройку названных: Максвелл, Ньютон, Эйнштейн.

Его страсть к исследованиям и приобретению новых знаний была беспредельна. С юности Максвелл решил посвятить себя физике. Его наставник Гопкинс писал: «Это был самый экстраординарный человек, которого я когда-либо видел.

Он органически был неспособен думать о физике неверно. Я растил его как великого гения, со всей его эксцентричностью и пророчеством о том, что он в один прекрасный день будет сиять в физике – пророчеством, с которым убежденно были согласны и его коллеги-студенты».


Однажды при приеме экзамена у аспирантов профессор поставил цель отсеять как можно больше студентов и давал неразрешимые, по его мнению, задачи. Однако, Максвелл с такой задачей справился!


Так Максвелл открыл знаменитое распределение молекул по скоростям в газе, впоследствии названное его именем (распределение Максвелла), еще в годы своей учебы.


С 1871 года Максвелл становится профессором Кембриджского университета.


В 1873 году Максвелл пишет двухтомный фундаментальный «Трактат об электричестве и магнетизме», в котором сформулирована знаменитая максвелловская теория электромагнитного поля.


Максвелл сумел выразить законы электромагнитного поля в виде системы 4 дифференциальных уравнений в частных производных (уравнения Максвелла ), из которых следовало существование электромагнитных волн Теория электромагнетизма Максвелла получила опытное подтверждение и стала общепризнанной классической основой современной физики.


Многочисленные его увлечения другими отраслями физики были тоже очень плодотворны: он изобрел волчок, поверхность которого, окрашенная в разные цвета, при вращении образовывала самые неожиданные сочетания. При смещении красного и желтого получался оранжевый цвет, синего и желтого – зеленый, при смешении всех цветов спектра получался белый цвет – действие, обратное действию призмы – «диск Максвелла»; он нашел термодинамический парадокс, много лет не дававший покоя физикам – «дьявол Максвелла»; в кинетическую теорию были введены им «распределение Максвелла» и «статистика Максвелла – Больцмана»; есть «число Максвелла».

Кроме того, его перу принадлежит изящное исследование об устойчивости колец Сатурна, за которое ему была присуждена академическая медаль и после которого он становится «признанным лидером математических физиков". Максвелл создал множество небольших шедевров в самых разнообразных областях – от осуществления первой в мире цветной фотографии до разработки способа радикального выведения с одежды жировых пятен


Максвелл написал ряд статей для Британской энциклопедии, популярные книги: "Теория теплоты", "Материя и движение", "Электричество в элементарном изложении", переведённые на русский язык.


Интересно, что одна из форм записи второго начала термодинамики: dp/dt = JCM. Левая часть этой формулы часто встречалась в произведениях Максвелла, далеких от физики, в качестве подписи!


Но главная память о Максвелле, вероятно, единственном в истории науки человеке, в честь которого имеется столько названий, – это «уравнения Максвелла», «электродинамика Максвелла», «правило Максвелла», «ток Максвелла» и, наконец, –максвелл– единица магнитного потока в системе CGS.



Знаете ли вы?

О наклонной плоскости

Исследуя перекатывание шара «с горки на горку», Галилей предположил, что, говоря современным языком, приобретаемая при спуске скорость не зависит от формы пути, по которому движется тело. Галилей, естественно, не знал, что такое положение вытекает из закона сохранения энергии, однако он этот закон предчувствовал и применял в простейших случаях падения тела или движения по наклонной плоскости и в опытах с маятником.

Джеймс Максвелл - физик, который первым сформулировал основы классической электродинамики. Их применяют до сих пор. Известно знаменитое уравнение Максвелла, именно он ввел в эту науку такие понятия, как ток смещения, электромагнитное поле, предсказал электромагнитные волны, природу и давление света, сделал множество других важных открытий.

Детство физика

Физик Максвелл родился в XIX веке, в 1831 году. Он появился на свет в шотландском Эдинбурге. Герой нашей статьи происходил из рода Клерков, его отец владел фамильным имением в Южной Шотландии. В 1826 году он нашел себе супругу по имени Фрэнсис Кей, они сыграли свадьбу, а через 5 лет у них родился Джеймс.

В младенчестве Максвелл с родителями переехал в имение Миддлби, здесь он и провел детство, которое было сильно омрачено смертью матери от рака. Еще в первые годы жизни он активно интересовался окружающим миром, увлекался поэзией, его окружали так называемые "научные игрушки". Например, предшественник кинематографа "магический диск".

В 10-летнем возрасте он начал заниматься с домашним учителем, но это оказалось неэффективным, тогда в 1841 году он переехал в Эдинбург к своей тете. Здесь он начал посещать Эдинбургскую академию, в которой упор делался на классическое образование.

Учеба в Эдинбургском университете

В 1847 году будущий физик Джеймс Максвелл начинает учиться в Тут он изучал труды по физике, магнетизму и философии, ставил многочисленные лабораторные опыты. Больше всего его интересовали механические свойства материалов. Он их исследовал с помощью поляризованного света. Такая возможность у физика Максвелла появилась после того, как его коллега Уильям Николь подарил ему два собственноручно собранных поляризационных прибора.

В то время он изготавливал большое количество моделей из желатина, подвергал их деформациям, следил за цветными картинами в поляризованном свете. Сравнивая свои опыты с теоретическими изысканиями, Максвелл вывел много новых закономерностей и проверил старые. В то время результаты этой работы были чрезвычайно важны для строительной механики.

Максвелл в Кембридже

В 1850 году Максвелл желает продолжить образование, хотя отец и не в восторге от этой затеи. Ученый отправляется в Кембридж. Там он поступает в недорогой колледж Питерхаус. Имевшаяся там учебная программа не удовлетворяла Джеймса, к тому же учеба в Питерхаусе не давала никаких перспектив.

Только в конце первого семестра ему удалось убедить отца и перевестись в более престижный Тринити-колледж. Через два года он становится стипендиатом, получает отдельную комнату.

При этом Максвелл практически не занимается научной деятельностью, больше читает и посещает лекции видных ученых своего времени, пишет стихи, участвует в интеллектуальной жизни университета. Герой нашей статьи много общается с новыми людьми, за счет этого компенсирует природную застенчивость.

Интересным был распорядок дня Максвелла. С 7 утра до 5 вечера он трудился, затем засыпал. Снова вставал в 21.30, читал, а с двух до полтретьего ночи занимался бегом прямо в коридорах общежития. После этого снова ложился, чтобы проспать до самого утра.

Работы по электричеству

Во время пребывания в Кембридже физик Максвелл всерьез увлекается проблемами электричества. Он исследует магнитных и электрических эффектов.

К тому времени Майкл Фарадей выдвинул теорию электромагнитной индукции, силовых линий, способных соединять отрицательный и положительный электрические заряды. Однако такая концепция действия на расстоянии не нравилась Максвелла, интуиция ему подсказывала, что где-то есть противоречия. Поэтому он решил построить математическую теорию, которая объединила бы результаты, полученные сторонниками дальнодействия, и представление Фарадея. Он использовал метод аналогии и применил результаты, которых ранее добился Уильямом Томсоном при анализе процессов теплопередачи в твердом теле. Так он впервые дал аргументированное математическое обоснование тому, как идет передача электрического действия в определенной среде.

Цветные снимки

В 1856 году Максвелл отправляется в Абердин, где вскоре женится. В июне 1860 году на съезде Британской ассоциации, который проходит в Оксфорде, герой нашей статьи делает важный доклад о своих исследования в области теории цветов, подкрепляя их конкретными экспериментами с помощью цветового ящика. В том же году его награждают медалью за работу над соединением оптики и цветов.

В 1861 году он предоставляет в Королевском институте неопровержимые доказательства верности своей теории - это цветная фотография, над которой он работал еще с 1855 года. Такого в мире еще никто не делал. Негативы он снял через несколько фильтров - синий, зеленый и красный. Освещая негативы через те же фильтры, ему удается получить цветное изображение.

Уравнение Максвелла

Сильное влияние в биографии Джеймса Клерка Максвелла на него оказали и Томсон. В результате он приходит к заключению, что магнетизм обладает вихревой природой, а электрический ток - поступательной. Он создает механическую модель, чтобы наглядно все продемонстрировать.

В результате ток смещения привел к знаменитому уравнению непрерывности, которое до сих пор используется для электрического заряда. По мнению современников, это открытие стало самым значимым вкладом Максвелла в современную физику.

Последние годы жизни

Последние годы своей жизни Максвелл провел в Кембридже на различных административных должностях, становился президентом философского общества. Вместе с учениками исследовал распространение волн в кристаллах.

Сотрудники, которые с ним работали, неоднократно отмечали, что он был максимально прост в общении, всецело отдавался исследованиям, имел уникальную способность проникать в суть самой проблемы, был очень проницательным, при этом адекватно реагировал на критику, никогда не стремился стать знаменитым, но в то же время был способен на весьма утонченный сарказм.

Первые симптомы серьезного заболевания у него проявились в 1877 году, когда Максвеллу исполнилось всего 46 лет. Он все чаще стал задыхаться, ему трудно было есть и проглатывать пищу, возникали сильные боли.

Уже через два года ему было совсем тяжело читать лекции, выступать на публике, он очень быстро уставал. Врачи отмечали, что его состояние постоянно ухудшалось. Диагноз медиков был неутешителен - рак брюшной полости. В конце года, окончательно ослабев, он вернулся из Гленлэра в Кембридж. Облегчить его страдания пытался доктор Джеймс Паджет, известный в то время.

В ноябре 1879 году Максвелл умер. Гроб с его телом перевезли из Кембриджа в фамильное имение, похоронив рядом с родителями на небольшом деревенском кладбище в Партоне.

Олимпиада в честь Максвелла

Память о Максвелле сохранилась в названиях улиц, зданий, астрономических объектов, наград и благотворительных фондов. Также ежегодно в Москве проходит олимпиада по физике имени Максвелла.

Она проходит для учеников с 7 по 11 классы включительно. Для школьников 7-8 классов результаты олимпиады Максвелла по физике являются заменой регионального и Всероссийского этапа олимпиады школьников по физике.

Чтобы участвовать в региональном этапе, нужно получить достаточное количество баллов на предварительном отборе. Региональный и финальный этапы олимпиады Максвелла по физике проходят в два этапа. Один из них теоретический, а второй - экспериментальный.

Интересно, что задания олимпиады Максвелла по физике на всех этапах совпадают по уровню сложности с испытаниями финальных этапов Всероссийской олимпиады школьников.

Биография

Родился в семье шотландского дворянина из знатного рода Клерков (Clerks).

Учился сначала в Эдинбургской академии, Эдинбургском университете (1847-1850), затем в Кембриджском (1850-1854) университете (Питерхауз и Тринити-колледж).

Научная деятельность

Свою первую научную работу Максвелл выполнил ещё в школе, придумав простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его «Трудах». В бытность членом совета Тринити-колледжа занимался экспериментами по теории цветов , выступая как продолжатель теории Юнга и теории трёх основных цветов Гельмгольца . В экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета (диск Максвелла). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую - жёлтым, он казался оранжевым; смешивание синего и жёлтого создавало впечатление зелёного. В 1860 году за работы по восприятию цвета и оптике Максвелл был награждён медалью Румфорда.

Одной из первых работ Максвелла стала его кинетическая теория газов . В 1859 году учёный выступил на заседании Британской ассоциации с докладом, в котором привёл распределение молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Р. Клаузиуса , который ввёл понятие «средней длины свободного пробега». Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что «частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, то есть в соответствии со статистикой Гаусса». В рамках своей теории Максвелл объяснил закон Авогадро , диффузию , теплопроводность , внутреннее трение (теория переноса). В 1867 показал статистическую природу второго начала термодинамики («демон Максвелла »).

В 1831, в год рождения Максвелла, М. Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции . Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие учёные, как А. М. Ампер и Ф. Нейман, придерживались концепции дальнодействия , рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий , которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Силовые линии заполняют все окружающее пространство (поле , по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Следуя Фарадею, Максвелл разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе «Фарадеевы силовые линии» (Faraday’s Lines of Force , 1857). В 1860-1865 Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла), описывающих основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е - магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е - закон сохранения количества электричества; 4-е - вихревой характер магнитного поля.

Продолжая развивать эти идеи, Максвелл пришёл к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, то есть должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3,4*10 10 см/с, что близко к скорости света , измеренной семью годами ранее французским физиком А. Физо . В октябре 1861 Максвелл сообщил Фарадею о своём открытии: свет - это электромагнитное возмущение, распространяющееся в непроводящей среде, то есть разновидность электромагнитных волн . Этот завершающий этап исследований изложен в работе Максвелла Динамическая теория электромагнитного поля (Treatise on Electricity and Magnetism, 1864), а итог его работ по электродинамике подвёл знаменитый Трактат об электричестве и магнетизме (1873).

Другие достижения и изобретения

Библиография

Примечания

Литература

Сочинения

  • Максвелл Дж. К. Теория теплоты. СПб., 1888.
  • Максвелл Дж. К. Речи и статьи. М.–Л.: 1940.
  • Максвелл Дж. К. Избранные сочинения по теории электромагнитного поля. М.: Изд. АН СССР, 1954.
  • Максвелл Дж. К. Трактат об электричестве и магнетизме. В 2-х томах. М.: Наука, 1989. Том 1. Том 2.

Ссылки

  • Джон Дж. О’Коннор и Эдмунд Ф. Робертсон. Максвелл, Джеймс Клерк в архиве MacTutor

Wikimedia Foundation . 2010 .

Смотреть что такое "Джеймс Максвелл" в других словарях:

    James Clerk Maxwell Дата рождения: 13 июня 1831 Место рождения: Эдинбург, Шотландия Дата смерти: 5 ноября 1879 Место смерти … Википедия

    Джеймс Клерк Максвелл James Clerk Maxwell Дата рождения: 13 июня 1831 Место рождения: Эдинбург, Шотландия Дата смерти: 5 ноября 1879 Место смерти … Википедия

    Джеймс Клерк Максвелл James Clerk Maxwell Дата рождения: 13 июня 1831 Место рождения: Эдинбург, Шотландия Дата смерти: 5 ноября 1879 Место смерти … Википедия

    - (13 июня 1831 Эдинбург, 5 ноября 1879, Кембридж), английский физик, создатель классической электродинамики, один из основоположников статистической физики, основатель одного из крупнейших мировых научных центров конца 19 нач. 20 вв. Кавендишской… … Большой Энциклопедический словарь

    Максвелл, Джеймс Клерк - Джеймс Клерк Максвелл. МАКСВЕЛЛ (Maxwell) Джеймс Клерк (1831 79), английский физик, создатель классической электродинамики, один из основоположников статистической физики. Создал теорию электромагнитного поля (уравнения Максвелла), описывающую… … Иллюстрированный энциклопедический словарь

Джеймс Клерк Максвелл (1831-79) - английский физик, создатель классической электродинамики , один из основоположников статистической физики, организатор и первый директор (с 1871) Кавендишской лаборатории, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, установил первый статистический закон - закон распределения молекул по скоростям, названный его именем.

Развивая идеи Майкла Фарадея, создал теорию электромагнитного поля (уравнения Максвелла); ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света. Установил статистическое распределение, названное его именем. Исследовал вязкость, диффузию и теплопроводность газов. Максвелл показал, что кольца Сатурна состоят из отдельных тел. Труды по цветному зрению и колориметрии (диск Максвелла), оптике (эффект Максвелла), теории упругости (теорема Максвелла, диаграмма Максвелла - Кремоны), термодинамике, истории физики и др.

Семья. Годы учения

Джеймс Максвелл родился 13 июня 1831, в Эдинбурге. Он был единственным сыном шотландского дворянина и адвоката Джона Клерка, который, получив в наследство поместье жены родственника, урожденной Максвелл, прибавил это имя к своей фамилии. После рождения сына семья переехала в Южную Шотландию, в собственное поместье Гленлэр («Приют в долине»), где и прошло детство мальчика.

В 1841 отец отправил Джеймса в школу, которая называлась «Эдинбургская академия». Здесь в 15 лет Максвелл написал свою первую научную статью «О черчении овалов». В 1847 он поступил в Эдинбургский университет, где проучился три года, и в 1850 перешел в Кембриджский университет, который окончил в 1854. К этому времени Джеймс Максвелл был первоклассным математиком с великолепно развитой интуицией физика.

Создание Кавендишской лаборатории. Преподавательская работа

По окончании университета Джеймс Максвелл был оставлен в Кембридже для педагогической работы. В 1856 он получил место профессора Маришал-колледжа в Абердинском университете (Шотландия). В 1860 избран членом Лондонского королевского общества. В том же году переехал в Лондон, приняв предложение занять пост руководителя кафедры физики в Кинг-колледже Лондонского университета, где работал до 1865 года.

Вернувшись в 1871 в Кембриджский университет, Максвелл организовал и возглавил первую в Великобритании специально оборудованную лабораторию для физических экспериментов, известную как Кавендишская лаборатория (по имени английского ученого Генри Кавендиша). Становлению этой лаборатории, которая на рубеже 19-20 вв. превратилась в один из крупнейших центров мировой науки, Максвелл посвятил последние годы своей жизни.

Вообще фактов из жизни Максвелла известно немного. Застенчивый, скромный, он стремился жить уединенно и не вел дневников. В 1858 Джеймс Максвелл женился, но семейная жизнь, видимо, сложилась неудачно, обострила его нелюдимость, отдалила от прежних друзей. Существует предположение, что многие важные материалы о жизни Максвелла погибли во время пожара 1929 в его гленлэрском доме, через 50 лет после его смерти. Он умер от рака в возрасте 48 лет.

Научная деятельность

Необычайно широкая сфера научных интересов Максвелла охватывала теорию электромагнитных явлений, кинетическую теорию газов, оптику, теорию упругости и многое другое. Одними из первых его работ были исследования по физиологии и физике цветного зрения и колориметрии, начатые в 1852. В 1861 Джеймс Максвелл впервые получил цветное изображение, спроецировав на экран одновременно красный, зеленый и синий диапозитивы. Этим была доказана справедливость трехкомпонентной теории зрения и намечены пути создания цветной фотографии. В работах 1857-59 Максвелл теоретически исследовал устойчивость колец Сатурна и показал, что кольца Сатурна могут быть устойчивы лишь в том случае, если состоят из не связанных между собой частиц (тел).

В 1855 Д. Максвелл приступил к циклу своих основных работ по электродинамике. Были опубликованы статьи «О фарадеевых силовых линиях» (1855-56), «О физических силовых линиях» (1861-62), «Динамическая теория электромагнитного поля» (1869). Исследования были завершены выходом в свет двухтомной монографии «Трактат об электричестве и магнетизме» (1873).

Создание теории электромагнитного поля

Когда Джеймс Максвелл в 1855 начал исследования электрических и магнитных явлений, многие из них уже были хорошо изучены: в частности, установлены законы взаимодействия неподвижных электрических зарядов (закон Кулона) и токов (закон Ампера); доказано, что магнитные взаимодействия есть взаимодействия движущихся электрических зарядов. Большинство ученых того времени считало, что взаимодействие передается мгновенно, непосредственно через пустоту (теория дальнодействия).

Решительный поворот к теории близкодействия был сделан Майклом Фарадеем в 30-е гг. 19 в. Согласно идеям Фарадея, электрический заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой, и наоборот. Взаимодействие токов осуществляется посредством магнитного поля. Распределение электрических и магнитных полей в пространстве Фарадей описывал с помощью силовых линий, которые по его представлению напоминают обычные упругие линии в гипотетической среде - мировом эфире.

Максвелл полностью воспринял идеи Фарадея о существовании электромагнитного поля, то есть о реальности процессов в пространстве возле зарядов и токов. Он считал, что тело не может действовать там, где его нет.

Первое, что сделал Д.К. Максвелл - придал идеям Фарадея строгую математическую форму, столь необходимую в физике. Выяснилось, что с введением понятия поля законы Кулона и Ампера стали выражаться наиболее полно, глубоко и изящно. В явлении электромагнитной индукции Максвелл усмотрел новое свойство полей: переменное магнитное поле порождает в пустом пространстве электрическое поле с замкнутыми силовыми линиями (так называемое вихревое электрическое поле).

Следующий, и последний, шаг в открытии основных свойств электромагнитного поля был сделан Максвеллом без какой-либо опоры на эксперимент. Им была высказана гениальная догадка о том, что переменное электрическое поле порождает магнитное поле, как и обычный электрический ток (гипотеза о токе смещения). К 1869 все основные закономерности поведения электромагнитного поля были установлены и сформулированы в виде системы четырех уравнений, получивших название Максвелла уравнений.

Уравнения Максвелла - основные уравнения классической макроскопической электродинамики, описывающие электромагнитные явления в произвольных средах и в вакууме. Уравнения Максвелла получены Дж. К. Максвеллом в 60-х гг. 19 в. в результате обобщения найденных из опыта законов электрических и магнитных явлений.

Из уравнений Максвелла следовал фундаментальный вывод: конечность скорости распространения электромагнитных взаимодействий. Это главное, что отличает теорию близкодействия от теории дальнодействия. Скорость оказалась равной скорости света в вакууме: 300000 км/с. Отсюда Максвелл сделал заключение, что свет есть форма электромагнитных волн.

Работы по молекулярно-кинетической теории газов

Чрезвычайно велика роль Джеймса Максвелла в разработке и становлении молекулярно-кинетической теории (современное название - статистическая механика). Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им был открыт первый статистический закон - закон распределения молекул по скоростям (Максвелла распределение). Кроме того, он рассчитал значения вязкости газов в зависимости от скоростей и длины свободного пробега молекул, вывел ряд соотношений термодинамики.

Распределение Максвелла - распределение по скоростям молекул системы в состоянии термодинамического равновесия (при условии, что поступательное движение молекул описывается законами классической механики). Установлено Дж. К. Максвеллом в 1859.

Максвелл был блестящим популяризатором науки. Он написал ряд статей для Британской энциклопедии и популярные книги: «Теория теплоты» (1870), «Материя и движение» (1873), «Электричество в элементарном изложении» (1881), которые были переведены на русский язык; читал лекции и доклады на физические темы для широкой аудитории. Максвелл проявлял также большой интерес к истории науки. В 1879 он опубликовал труды Г. Кавендиша по электричеству, снабдив их обширными комментариями.

Оценка работ Максвелла

Работы ученого не были по достоинству оценены его современниками. Идеи о существовании электромагнитного поля казались произвольными и неплодотворными. Только после того, как Генрих Герц в 1886-89 экспериментально доказал существование электромагнитных волн, предсказанных Максвеллом, его теория получила всеобщее признание. Произошло это спустя десять лет после смерти Максвелла.

После экспериментального подтверждения реальности электромагнитного поля было сделано фундаментальное научное открытие: существуют различные виды материи, и каждому из них присущи свои законы, не сводимые к законам механики Ньютона. Впрочем, сам Максвелл вряд ли отчетливо это сознавал и первое время пытался строить механические модели электромагнитных явлений.

О роли Максвелла в развитии науки превосходно сказал американский физик Ричард Фейнман: «В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием 19 столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием».

Джеймс Максвелл скончался 5 ноября 1879, Кембридж. Он похоронен не в усыпальнице великих людей Англии - Вестминстерском аббатстве, - а в скромной могиле рядом с его любимой церковью в шотландской деревушке, недалеко от родового поместья.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!